LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2023

UMT 4501 - REAL ANALYSIS-I

Date: 02-05-2023
Dept. No. \square Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

PART A

Answer ALL the questions

1. Let $f: R \rightarrow R$ be defined by $f(x)=2 x-3$ and $g: R \rightarrow R$ be defined by $g(x)=\frac{x+3}{2}$. Verify $f \circ g=g \circ f$.
2. State well ordering property of N.
3. Determine the set of all real numbers x such that $2 x+3 \leq 6$.
4. If z and a are elements in \mathbb{R} with $z+a=a$ then show that $z=0$.
5. Define supremum of a set $S \subseteq R$.
6. State completeness property of R.
7. Show that $\lim _{n \rightarrow \infty}\left(\frac{3 n+2}{n+1}\right)=3$.
8. Write the first five terms of the sequence $\left(x_{n}\right)=\frac{1}{(n+2)(3 n+1)}$.
9. State Ratio test.
10. When a series is said to be absolutely convergent?

PART B

Answer any FIVE questions

11. Prove that $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ is true for all $n \in N$ using principle of mathematical induction.
12. Prove that the set of all rational numbers is denumerable.
13. State and prove Bernoulli's inequality.
14. If $a, b \in R$ then prove that (i) $||a|-|b|| \leq|a-b|$ (ii) $|a-b| \leq|a|+|b|$.
15. Prove that a number u is the supremum of a nonempty subset S of \mathbb{R} if and only if u satisfies the condition (i) $s \leq u$ for all $s \in S$ (ii) if $v<u$ then there exists $s^{\prime} \in S$ such that $v<s^{\prime}$.
16. State and prove Archimedean property.
17. State and prove Squeeze theorem.
18. Test for convergency of the series $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots \cdot 2 n}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n+1)}$ using Raabe's test.

PART C

Answer any TWO questions
19. (a) Prove that the following statements are equivalent
(i) S is a countable set
(ii) There exists a surjection of N onto S .
(iii) There exists an injection of S into N .
(b) State and prove Cantor's theorem.
20. (a) If AM and GM denote the arithmetic and geometric mean of two positive real numbers a and b respectively, then prove that (i) $\frac{1}{2}(a+b) \geq \sqrt{a b} \quad$ (ii) $\frac{1}{2}(a+b)=\sqrt{a b}$ if and only if $a=b$.
(b) State and prove Nested interval property.
21. (a) Prove that the set of all real numbers R is not countable.
(b) Let $X=\left\{x_{n}\right\}$ and $Y=\left\{y_{n}\right\}$ be sequences of real numbers that converges to x and y respectively and let $c \in R$ then prove that the sequences $X+Y, X Y$ and $c X$ converges to $x+y, x y$ and $c x$ respectively.
22. (a) State and prove Bolzano-Weierstrass theorem.
(b) Test the convergence for the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ by Cauchy's integral test.

